NEUTRINO AND THE FUTURE OF ENERGY

Neutrinos: Energy Source Resource & Development
Albert Einstein
Albert Einstein
Wolfgang Ernst Pauli
Wolfgang Ernst Pauli
STEPHEN HAWKING
STEPHEN HAWKING
Nikola Tesla
Nikola Tesla
Arthur McDonald
Arthur McDonald
Takaaki Kajita
Takaaki Kajita
Jack Steinberger
Jack Steinberger
Konstantin Meyl
Konstantin Meyl
Holger Thorsten Schubart
Holger Thorsten Schubart
It’s an exciting time for energy as we enter the year 2022 . A higher degree of climate awareness has resulted in significant shifts in people’s attitudes and thinking about how they power their lives, necessitating the adoption of new energy standards. It’s also fueling energy technology innovation, resulting in
A race between electric planes, a new dark-matter detector, and a permanent Chinese space station are all on the horizon. Deep-Space Lasers of Psyche The Psyche mission, which will send a deep-space orbiter to a strange metal asteroid circling between Mars and Jupiter, will launch in August. While the major
Human activities on the lunar surface are severely constrained by the space radiation dominated by cosmic rays (CRs). Here, we report the first measurements of the low-energy (about 10 to 100 MeV/nuc) CR spectra on the lunar surface from China’s Chang’E-4 (CE-4) mission around the solar minimum 24/25. The results
Despite the fact that neutrinovoltaic technology is one of the most recent types of energy generation, Neutrino Energy Group is glad to report that this paradigm-shifting technology is already creating ripples throughout the world. Neutrinovoltaic technology is derived from the terms “neutrino” and “photovoltaic,” and it generates electrical energy from
Certain neutrino/matter collisions result in a phenomenon called resonance, which is typified by unusually regular particle scattering after neutrino impact. It’s postulated that this resonance could explain why neutrinos have mass and, therefore, how to exploit this mass better to produce energy. The Neutrino Energy Group, a partnership of scientists

Interested in investing in the future?  

>>Find out more<<

Neutrino Wiki jetzt auch auf Deutsch! 

>>Hier zur deutschen Webseite<<


Информация о нейтрино теперь и по-русски

>>Информация<<


Más información sobre neutrinos también está disponible en español! 

>>Más información<<

Takaaki Kajita: Discovery of atmospheric neutrino oscillations

Arthur B. McDonald wins 2015 Nobel Prize in Physics

HARNESSING THE POWER OF COSMIC RADIATION
SOLAR POWER IS EXPECTED TO OUTPACE ALL OTHER ENERGY FORMS BY 2040, BUT ITS DOWNSIDE IS THAT IT CAN’T WORK WHEN THE SUN ISN’T SHINING. ENTER NEUTRINO ENERGY AND ITS NEUTRINOVOLTAIC POWER CUBES, ABLE TO HARNESS THE POWER OF COSMIC RADIATION EVEN IN TOTAL DARKNESS. Ground was broken in the
DECENTRALIZED NEUTRINO ENERGY WILL ENABLE UNPRECEDENTED FREEDOM
Human beings can only prosper when they have adequate access to energy. A few centuries ago, energy derived from wood fires, waterways, and muscles could power every type of technology in existence.
Neutrinovoltaic Technology and the energy crisis
The worldwide situation has already escalated to the point that the world is now in a global struggle, and there is legitimate anxiety that we are all on the edge of large-scale conflicts. However, there is a detrimental tendency in the modern world in which non-professionals with insufficient education, experience,
NEUTRINO ENERGY WILL COLLABORATE WITH RUSSIA TO DEVELOP NEW ENERGY TECHNOLOGY
Despite the alarming scale of the coronavirus’s global spread and its more dangerous mutation Omicron, the catastrophic dynamics of climate change, and the world’s difficult economic situation, politicians appear to have decided that nothing is more important than escalating the level of political confrontation in these circumstances. Endless and ineffective
In ‘Nature’: The need to update neutrino models
Neutrinos may be the key to finally solving a mystery of the origins of our matter-dominated universe, and preparations for two major, billion-dollar experiments are underway to reveal the particles’ secrets. Now, a team of nuclear physicists have turned to the humble electron to provide insight for how these experiments
Tech businesses and Neutrinovoltaic Energy have the potential to play a significant role in addressing the climate crisis
The valuation of big IT businesses on worldwide stock markets and CO2 concentrations in the atmosphere have increased in lockstep during the last decade. There isn’t much of a link between these two phenomena: major tech companies’ energy use is tiny in comparison to their economic, financial, and even social
DUNE collaboration starts production of components for its gigantic neutrino detector
How can you study a particle that’s almost invisible? For the last decade, Justin Evans at the University of Manchester has been asking this question. “The neutrino is clearly a weird particle,” said Evans. “It’s so light we haven’t even measured its absolute mass.” Neutrinos are some of the most
IN 2022, THERE ARE SIX ELECTRIC CAR ADVANCEMENTS TO KEEP AN EYE ON
Electric vehicles (EVs) are becoming a more appealing low-carbon transportation choice, given to their environmental benefits, lower operating costs, and expanding model range. At the end of last year, there were 10 million electric cars on the road around the world, with that number expected to rise to 145 million
Recently Added
Recently added contents and articles.
Neutrinos in the media
The original article can be found on Forbes India: https://bit.ly/3e88gJf The Car Pi: Invisible radiation converted by metamaterials will power the electrical vehicles of tomorrow New Member of Neutrino Energy Groups Scientific Advisory Board to Develop Electric Car with Metamaterials In India and elsewhere around the globe, consumers are being incentivized to
Just a decade ago, leading scientists scoffed at the idea that neutrinos could be harnessed for energy. Long dubbed the “ghost particle,” the neutrino was seen as ephemeral and essentially useless. With the discovery that neutrinos have mass, it became apparent that these particles also have energy. Preliminary experiments have
Last year, physicists reported that, when chilled to 1.7°C above absolute zero (–273°C), sheets of carbon atoms two layers thick can conduct electricity without resistance, allowing electrons to whiz through the material without losing any energy. The double sheets of carbons, known as bilayer graphene, have captivated researchers because their

Work on neutrino win McDonald the Nobel Prize in physics

Neutrino Discovery Leads to Nobel Prize in Physics

What is Neutrino Energy?

“The harness of waterfalls is the most economical method known for drawing energy from the sun,” observed the famed scientist Nikola Tesla. Yet, recent discoveries of unusual properties of a tiny subatomic particle may make Tesla’s opinion obsolete. Modern researchers are now convinced the neutrino is the source of abundant, clean, renewable energy.

The Neutrino: A Mysterious Particle

The idea that matter is made up of small building blocks is very old. Ancient Greek thinkers like Leucippus suggested such a theory and even coined the term “atom” as the name of the tiny unit. By the 1800s, modern scientists expanded on this idea and began to unlock the secrets of the atom. They discovered that atoms were made up of smaller “subatomic” particles like electrons.Yet, these early physicists did not realize that even smaller particles existed until radioactivity was discovered near the beginning of the 20th century. Ernest Rutherford, an early British researcher in radioactive elements, discovered that electrons were emitted when a radioactive substance decays. Further study revealed that there was an unexplained loss of energy during this decay process.

The law of the conservation of energy tipped off scientists that there must be a mysterious particle which contained the missing energy. Physicist Wolfgang Pauli theorized that an unidentified sub atomic particle is emitted along with an electron during the decay process, and called it a “neutron.” In 1931, Italian physicist Enrico Fermi renamed the particle “neutrino” to distinguish it from the just discovered larger neutral particle, the neutron.

It would take scientists another 25 years to verify the existence of neutrinos. In 1956, Los Alamos scientists Clyde Cown, Frederick Reines, and three other researchers detected neutrinos in laboratory experiment that used large tanks of water located near a nuclear reactor. The physicists were able to detect neutrinos emitted from the reactor by recording their interactions with protons in the water. This was the confirmation of Pauli’s theory and proof that neutrinos did exist. The team of scientists eventually won the 1995 Nobel Prize for their discovery.

However, the potential of the tiny particle was unknown at first, since researchers believed neutrinos lack any mass. Without mass, there would be little practical benefit to be harnessed from the sub-atomic particle. It would take another generation of research before the value of neutrinos would be seen.

The Valuable Properties of the Neutrino

Researchers have found that neutrinos possess some valuable properties. First, the tiny particles have mass. This fact eluded scientists for many decades. “Scientists have assumed for decades that, because they interact so little with matter, neutrinos must lack any measurable mass,” writes Jennifer Chu of the Massachusetts Institute of Technology.This belief changed when scientists discovered that neutrinos oscillate. Two physicists, working independently of each other, discovered that neutrinos can change between three different “flavors.” This is called “oscillation.” Takaaki Kajita and Arthur B. McDonald shared the 2015 Nobel Prize in Physics for their simultaneous discovery of this feature. For oscillation to occur, a neutrino must possess mass.

While the mass amount is so small that it makes it difficult to measure it, this characteristic of a neutrino is still immensely important as a energy source. This is due to energy’s special relationship with mass. Einstein’s Special Theory of Relativity described this relationship in the famous equation E=MC2, which revealed that mass can be converted into energy. With trillions of neutrinos reaching earth each day from the Sun, vast amounts of energy can be harnessed if science can unlock the process to convert neutrino mass to electric energy.

Another important property of the neutrino is its “ghost-like” nature. The particle is so small that it does not interact with other materials. This means neutrinos pass through solid matter as if it did not exist. Scientists estimate that billions of neutrinos pass through the Earth each day. This feature means that it would be possible to produce energy anywhere on the face of the earth at any time from sun’s neutrinos – even when a location is facing away from the sun.

The Vast Possibilities for the Future

With an increased understanding of the neutrino, many possibilities exist for practical applications. First, neutrinos may improve monitoring of nuclear weapons. Since every radioactive material produces neutrinos, the production of nuclear weapons by rogue nations could be monitored with detectors tuned to identify neutrinos from a great distance. “[Such a] device would consist of a tank containing thousands of tons of gadolinium-doped water and could theoretically detect antineutrinos from an illicit reactor up to 1,000 kilometers away,” writes Jesse Emspak for Scientific American.Second, neutrinos may be useful in researching the inner depths of the Earth. This is due to the tiny particles’ reactions when passing through materials. A neutrino spins as it travels, and this movement is influenced by the material through which it passes. Scientists believe they could develop neutrino scanners which could “see” into the Earth’s core and identify specific minerals or oil deposits.

Third, communication systems could be improved with the harnessing of neutrinos. Electromagnetic radiation has been the traditional medium for transmitting communication, but it has its limitations. For example, seawater interferes with efficient communication with submerged nuclear submarines. Yet, neutrinos easily pass through seawater, which would make them an idea carrier of communication. While physicists have long theorized that neutrino-based communication was possible, it was not proven possible until a 2012 experiment at Fermilab in Batavia, Illinois. Researchers there used the lab’s neutrino beam projector to transmit the word “neutrino” 1 km.

Finally, the greatest potential benefit of neutrinos is the production of energy.

Though scientists have long dismissed the idea that neutrinos could serve as an energy source, the 2015 discovery of the mass of the neutrino convinced some in the field of science and industry that neutrino energy is possible. Neutrino, Inc. is a U.S. company focused on harnessing the power of the tiny particle. Collaborating with its subsidiary, Neutrino Germany GmbH, Neutrino, Inc. is currently developing neutrino-powered devices that can charge small devices like smart phones. Once this is achieved, the company then will tackle the challenge of developing a charging cell large enough to power an individual home.

“The future is green energy, sustainability, renewable energy,” said former California Governor Arnold Schwarzenegger. The tiny neutrino may be the key to unlocking a future of abundant, clean energy.